粘性率$1×10^{-3}Pa・s$の粘性流体が内径1cmのまっすぐな円筒管内を流速10cm/sで流れている。これと相似な流れはどれか。ただし、流体の密度はすべて等しいとする。
1: 粘性率$1×10^{-3}Pa・s$,管内径2cm,流速20cm/s
2: 粘性率$1×10^{-3}Pa・s$,管内径0.5cm,流速5cm/s
3: 粘性率$2×10^{-3}Pa・s$,管内径0.5cm,流速10cm/s
4: 粘性率$2×10^{-3}Pa・s$,管内径1cm,流速20cm/s
5: 粘性率$2×10^{-3}Pa・s$,管内径2cm,流速20cm/s
図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前のパイプの断面積をA1、絞りの後のパイプの断面積をA2とする。絞りの前後の圧力差P1一P2を表す式はどれか。ただし、流体の密度をρ(一定)、絞りの前の流速をv1とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}-1\right) $
2: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A^{2}_{1}}{A^{2}_{2}}\right) $
3: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A_{1}}{A_{2}}-1\right) $
4: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A_{1}}{A_{2}}\right) $
5: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}\right) $