図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前のパイプの断面積をA1、絞りの後のパイプの断面積をA2とする。絞りの前後の圧力差P1一P2を表す式はどれか。ただし、流体の密度をρ(一定)、絞りの前の流速をv1とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}-1\right) $
2: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A^{2}_{1}}{A^{2}_{2}}\right) $
3: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A_{1}}{A_{2}}-1\right) $
4: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A_{1}}{A_{2}}\right) $
5: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}\right) $
図のように1本の管から2本の管が分岐して内部に非圧縮性流体が流れて いるときに成り立つ式はどれか。ただし、pを圧力、vを流速、Qを流量とし、全ての管の断面積は等しいとする。
a: $ P_{1}=P_{2}+P_{3}$
b: $ v_{1}=v_{2}+v_{3}$
c: $ Q_{1}=Q_{2}+Q_{3}$
d: $ v^{2}_{1}=v^{2}_{2}+v^{2}_{3}$
e: $ Q^{2}_{1}=Q^{2}_{2}+Q^{2}_{3}$
1. a b 2. a e 3. b c 4. c d 5. d e