図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前後の圧力差 P1 - P2 を表す式はどれか。ただし、流体の密度をρ、絞りの前の流速をV1、絞りの後の流速をV2とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}$
2: $ \frac {1}{2}\rho v^{2}_{2}$
3: $ \frac {1}{2}\rho v_{1}v_{2}$
4: $ \frac {1}{2}\rho \left( v^{2}_{1}-v^{2}_{2}\right) $
5: $ \frac {1}{2}\rho \left( V^{2}_{2}-V^{2}_{1}\right) $
図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前のパイプの断面積をA1、絞りの後のパイプの断面積をA2とする。絞りの前後の圧力差P1一P2を表す式はどれか。ただし、流体の密度をρ(一定)、絞りの前の流速をv1とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}-1\right) $
2: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A^{2}_{1}}{A^{2}_{2}}\right) $
3: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A_{1}}{A_{2}}-1\right) $
4: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A_{1}}{A_{2}}\right) $
5: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}\right) $
図のパイプ状の流路において、上流から下流に行くに従い断面積が半分になる流路がある。上流に対して下流での流速と管路抵抗について正しいのはどれか。ただし、管路内の水の流れは層流を維持しているものとする。
1: 下流では流速は 1/2 倍になり、管路抵抗は 1/倍になる。
2: 下流では流速は 1/2 倍になり、管路抵抗は 1/4 倍になる。
3: 下流では流速は 1/2 倍になり、管路抵抗は 1/2 倍になる。
4: 下流では流速は になり、管路抵抗は 2倍 になる。
5: 下流では流速は になり、管路抵抗は 4倍 になる。
粘性率$1×10^{-3}Pa・s$の粘性流体が内径1cmのまっすぐな円筒管内を流速10cm/sで流れている。これと相似な流れはどれか。ただし、流体の密度はすべて等しいとする。
1: 粘性率$1×10^{-3}Pa・s$,管内径2cm,流速20cm/s
2: 粘性率$1×10^{-3}Pa・s$,管内径0.5cm,流速5cm/s
3: 粘性率$2×10^{-3}Pa・s$,管内径0.5cm,流速10cm/s
4: 粘性率$2×10^{-3}Pa・s$,管内径1cm,流速20cm/s
5: 粘性率$2×10^{-3}Pa・s$,管内径2cm,流速20cm/s