図のように1本の管から2本の管が分岐して内部に非圧縮性流体が流れて いるときに成り立つ式はどれか。ただし、pを圧力、vを流速、Qを流量とし、全ての管の断面積は等しいとする。
a: $ P_{1}=P_{2}+P_{3}$
b: $ v_{1}=v_{2}+v_{3}$
c: $ Q_{1}=Q_{2}+Q_{3}$
d: $ v^{2}_{1}=v^{2}_{2}+v^{2}_{3}$
e: $ Q^{2}_{1}=Q^{2}_{2}+Q^{2}_{3}$
1. a b 2. a e 3. b c 4. c d 5. d e
図のように断面積が異なる2本のピストン管をつなぎ、中に水を満たしてピストン1を押したとき、正しいのはどれか。
1: ピストン管1の中の圧力よりピストン管2の中の圧力の方が大きい。
2: ピストン管1とピストン管2をつなぐ管の中の圧力は零である。
3: 圧力はピストン管の壁やピストン管をつなぐ管の壁には作用しない。
4: ピストン2に出てくる力はピストン1を押す力より大きい。
5: ピストン1を押しても水の体積が変化しない現象をパスカルの原理と呼ぶ。
流体の運動について正しいのはどれか。
a: 円管内の定常流では平均流速と円管断面積との積は場所によらず一定である。
b: 粘性率がずり速度によって変化する流体をニュートン流体という。
c: 臨界レイノルズ数を超えると粘性率はゼロとなる。
d: ベルヌーイの定理によれば動圧と静圧との和が流速に比例する。
e: 粘性率が零の完全流体では流体が流れても力学的エネルギーは消費されない。
1. a b 2. a e 3. b c 4. c d 5. d e
半径rの水平でまっすぐな円管内を粘性率nの液体が流れている。長さL離れた2点間の圧力差がΔPである場合、管内の流量Qを示す式はどれか。ただし、管内の流れは層流である。
1: $\frac {\pi r^{2}\mu \Delta P}{8L}$
2: $\frac {\pi r^{3}\Delta P}{8\mu L}$
3: $\frac {\pi r^{3}\mu \Delta P}{8L}$
4: $\frac {\pi r^{4}\Delta P}{8\mu L}$
5: $\frac {\pi r^{4}\mu \Delta P}{8L}$
図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前後の圧力差 P1 - P2 を表す式はどれか。ただし、流体の密度をρ、絞りの前の流速をV1、絞りの後の流速をV2とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}$
2: $ \frac {1}{2}\rho v^{2}_{2}$
3: $ \frac {1}{2}\rho v_{1}v_{2}$
4: $ \frac {1}{2}\rho \left( v^{2}_{1}-v^{2}_{2}\right) $
5: $ \frac {1}{2}\rho \left( V^{2}_{2}-V^{2}_{1}\right) $