生体組織の電気的性質として正しいのはどれか。
a: 生体の電気抵抗率は周波数に依存しない。
b: 細胞膜は直流に対してほぼ完全な絶縁物と考えてよい。
c: 生体組織の中で骨は電気抵抗率が高い。
d: 生体組織の中で血液は電気抵抗率が高い。
e: 生体組織の中で脂肪は電気抵抗率が低い。
1. a b 2. a e 3. b c 4. c d 5. d e
b: 細胞膜は微小な直流に対してほぼ完全な絶縁物と考えてよい。
c: 生体組織の中では骨は電気抵抗率が高い。
d: 生体組織の中では血液は電気抵抗率が高い。
e: 生体組織の中では脂肪は電気抵抗率が低い。
誤っているのはどれか。
1: 電流密度が小さいと生体は導電体であると同時に誘電体とみなされる。
2: 電流密度が小さいと細胞膜は絶縁体、細胞内外液は導電体とみなされる。
3: 電流密度が大きいと神経細胞や筋細胞は興奮現象を生じる。
4: 直流では電流密度と導電率との積は電界の強さを表す。
5: 生体では周波数が増加するにしたがって導電率が増加し誘電率が減少する。
正しいのはどれか。
a: 血漿の物性は白血球数できまる。
b: 血液循環は生体内輪送作用の一つである。
c: 細胞への物質輸送には組織圧が関係する。
d: 細胞膜の電気容量は1μF/cm2程度である。
e: 生体が興奮現象を生じていることを生体の受動的性質という。
1. a b c 2. a b e 3. a d e 4. b c d 5. c d e
生体組織の受動的な電気特性で誤っているのはどれか。(生体物性材料工学)
1: 細胞内外液中のイオンが関係している。
2: 組織によって異なった値を示す。
3: 分散特性がある。
4: 薄い細胞膜は細胞が大きな静電容量をもつ主因である。
5: 周波数の増加に従い導電率は減少する。
生体の電気的な性質として誤っているのはどれか。
1: 導電率は周波数の増加とともに増加する。
2: 誘電率は周波数の増加とともに減少する。
3: 細胞内外液は脂肪組織と比較して導電率が大きい。
4: 細胞膜は細胞内外液と比べて導電率が極めて小さい。
5: γ分散は生体固有の組織構造による分散である。
細胞の電気活動について正しいのはどれか。(人体の機能と構造)
a: 静止状態では細胞外に対し細胞内は正に帯電している。
b: 静止膜電位の発生には主にCl-が関与する。
c: 活動電位の発生には主にNa+が関与する。
d: 細胞内外の電位差が減少することを脱分極という。
e: 細胞が電気的興奮を生じる最低の刺激を不応期という。
生体の電気特性について誤っているのはどれか。
1: 骨格筋は大きな電気的異方性を示す。
2: 血液の導電率は肝臓の導電率よりも高い。
3: 周波数の増加とともに導電率は低下する。
4: 細胞膜の電気容量は1cm2あたり1μF程度である。
5: 周波数が高い電流ほど電気的感受性が低下する。
細胞の電気的現象で正しいのはどれか。
1: 細胞外は細脳内に対して電気的に負の状態にある。
2: 静止電位はCl-が細胞内に流入することで発生する。
3: 活動電位はNa+が細胞外に流出することで発生する。
4: 細胞外の電位が上昇して0に近づくことを脱分極という。
5: 細胞内の電位があるレベルに達すると活動電位が発生する。
細胞の電気活動で正しいのはどれか。(医学概論)
a: 静止状態では細胞外に対して細胞内の電位が高い。
c: 細胞内外の電位差が減少することを脱分極という。
d: 活動電位の脱分極相にはNa+が関与する。
生体組織や細胞の電気的特性について誤っているのはどれか。
1: 低周波での導電率は高周波での導電率より高い。
2: 血液の導電率は骨格筋の導電率より高い。
3: 低周波での誘電率は高周波での誘電率より高い。
4: 肝臓の誘電率は骨の誘電率より高い。
5: 細胞内液の導電率は細胞膜の導電率より高い。
a: 1cm2の細胞膜の抵抗は0.5~10kΩである。
b: 細胞内液、外液の抵抗率は20~300kΩ・cmである。
c: 体表筋電図の振幅は1~3Vである。
d: 頭皮脳波の振幅は1~300μVである。
e: 体表心電図の振幅は1~3mVである。
生体の電気特性で誤っているのはどれか。
1: 血液の導電率は温度依存性がある。
2: 皮下脂肪の導電率は肝臓の導電率より高い。
3: b 分散は細胞の組織構造に依存する。
4: c 分散は水分子の緩和現象に起因する。
5: 静止電位は細胞内外のイオン濃度差による。
1: 誘電率は周波数の上昇とともに低下する。
2: 骨格筋は脂肪組織よりも異方性が大きい。
3: 細胞膜は1μF/cm2程度の静電容量をもつ。
4: α分散はイオンの集散に起因する。
5: β分散は約20GHzで生じる。
a: 神経細胞の活動電位の持続時間は約1秒である。
b: 静止電位は細胞内外のイオン濃度差に起因する。
c: 脱分極では細胞内の電位が正方向に変化する。
d: β分散は組織の構造に起因する。
e: γ分散はイオンの集散に起因する。
1: 低周波では誘電率が大きい。
2: 骨格筋は異方性が大きい。
3: 細胞膜は大きな電気容量をもつ。
5: β分散は約GHzで生じる。
1: 静止状態では細胞外は細胞内に対して負の電位を示す。
2: 静止電位はCl- が細胞内に流入することで発生する。
3: 活動電位はNa+ が細胞外に流出することで発生する。
4: 細胞外の電位が上昇して0 に近づくことを脱分極という。
5: 細胞内の電位が上昇してあるレベルに達すると活動電位が発生する。
組織インピーダンスの低周波領域(~1kHz)における特性で正しいのはどれか。
1: 細胞内液のリアクタンス成分が大きい。
2: 細胞膜のインピーダンスは小さい。
3: 等価回路は細胞外液の抵抗成分で近似できる。
4: 等価回路は細胞膜のキャパシタンス成分で近似できる。
5: 等価回路は細胞膜と細胞内液が並列に接続されている。
生体の電気的特性で誤っているのはどれか。
1: 活動電位の発生は生体の能動特性である。
2: 組織によっては異方性を示す。
3: 低周波では導電率が大きい。
4: 高周波では誘電率が小さい。
5: β分散は細胞膜と細胞質との構造に起因する。
神経細胞について正しいのはどれか。
1: 静止膜電位は約+70mVである。
2: 脱分極は膜電位が閾値を超えて上昇すると発生する。
3: 有髄神経は無髄神経よりも伝導速度が遅い。
4: ナトリウムイオンの細胞内濃度は細胞外よりも高い。
5: 脱分極時には細胞膜のカリウムイオン透過性が高くなる。
Showing 1 to 20 of 167 results