図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前のパイプの断面積をA1、絞りの後のパイプの断面積をA2とする。絞りの前後の圧力差P1一P2を表す式はどれか。ただし、流体の密度をρ(一定)、絞りの前の流速をv1とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}-1\right) $
2: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A^{2}_{1}}{A^{2}_{2}}\right) $
3: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A_{1}}{A_{2}}-1\right) $
4: $ \frac {1}{2}\rho v^{2}_{1}\left( 1-\frac {A_{1}}{A_{2}}\right) $
5: $ \frac {1}{2}\rho v^{2}_{1}\left( \frac {A^{2}_{1}}{A^{2}_{2}}\right) $
図のように1本の管から2本の管が分岐して内部に非圧縮性流体が流れて いるときに成り立つ式はどれか。ただし、pを圧力、vを流速、Qを流量とし、全ての管の断面積は等しいとする。
a: $ P_{1}=P_{2}+P_{3}$
b: $ v_{1}=v_{2}+v_{3}$
c: $ Q_{1}=Q_{2}+Q_{3}$
d: $ v^{2}_{1}=v^{2}_{2}+v^{2}_{3}$
e: $ Q^{2}_{1}=Q^{2}_{2}+Q^{2}_{3}$
1. a b 2. a e 3. b c 4. c d 5. d e
図のように水平に置かれた絞りのあるパイプに流体が流れている。絞りの前後の圧力差 P1 - P2 を表す式はどれか。ただし、流体の密度をρ、絞りの前の流速をV1、絞りの後の流速をV2とし、完全流体が定常流で流れているとする。
1: $ \frac {1}{2}\rho v^{2}_{1}$
2: $ \frac {1}{2}\rho v^{2}_{2}$
3: $ \frac {1}{2}\rho v_{1}v_{2}$
4: $ \frac {1}{2}\rho \left( v^{2}_{1}-v^{2}_{2}\right) $
5: $ \frac {1}{2}\rho \left( V^{2}_{2}-V^{2}_{1}\right) $
半径rの水平でまっすぐな円管内を粘性率nの液体が流れている。長さL離れた2点間の圧力差がΔPである場合、管内の流量Qを示す式はどれか。ただし、管内の流れは層流である。
1: $\frac {\pi r^{2}\mu \Delta P}{8L}$
2: $\frac {\pi r^{3}\Delta P}{8\mu L}$
3: $\frac {\pi r^{3}\mu \Delta P}{8L}$
4: $\frac {\pi r^{4}\Delta P}{8\mu L}$
5: $\frac {\pi r^{4}\mu \Delta P}{8L}$
図のパイプ状の流路において、上流から下流に行くに従い断面積が半分になる流路がある。上流に対して下流での流速と管路抵抗について正しいのはどれか。ただし、管路内の水の流れは層流を維持しているものとする。
1: 下流では流速は 1/2 倍になり、管路抵抗は 1/倍になる。
2: 下流では流速は 1/2 倍になり、管路抵抗は 1/4 倍になる。
3: 下流では流速は 1/2 倍になり、管路抵抗は 1/2 倍になる。
4: 下流では流速は になり、管路抵抗は 2倍 になる。
5: 下流では流速は になり、管路抵抗は 4倍 になる。